In contrast to forskolin and 3-isobutyl-1-methylxanthine, amrinone stimulates the cardiac voltage-sensitive release mechanism without increasing calcium-induced calcium release.
نویسندگان
چکیده
The objective of this study was to determine whether the voltage-sensitive release mechanism (VSRM) can be stimulated independently from Ca(2+)-induced Ca(2+) release (CICR) by drugs that elevate intracellular cAMP. Contractions were measured in voltage-clamped guinea pig ventricular myocytes at 37 degrees C. Na(+) current was blocked. We compared effects of agents that elevate cAMP through activation of adenylyl cyclase (1 microM forskolin), nonspecific inhibition of phosphodiesterases (PDEs) [100 microM 3-isobutyl-1-methylxanthine (IBMX)], and selective inhibition of PDE III (100-500 microM amrinone) on contractions initiated by the VSRM and CICR. Forskolin and IBMX significantly increased peak Ca(2+) current and CICR. In addition, these agents also markedly increased contractions elicited by test steps from -65 to -40 mV, which activate the VSRM. However, because these steps also induced inward current in the presence of forskolin or IBMX, CICR could not be excluded. In contrast, amrinone caused a large, concentration-dependent increase in VSRM contractions but had no effect on CICR contractions or Ca(2+) current. Sarcoplasmic reticulum Ca(2+), assessed by rapid application of caffeine (10 mM), was increased only modestly by all three drugs. Normalization of contractions to caffeine contractures indicated that amrinone increased fractional release by the VSRM, but not CICR. Forskolin and IBMX increased fractional release elicited by steps to -40 mV. Increases in CICR induced by forskolin and IBMX were proportional to caffeine contractures. Thus, positive inotropic effects of cAMP on VSRM contractions may be compartmentalized separately from effects on Ca(2+) current and CICR.
منابع مشابه
Identification and Characterization of Voltage- Sensitive Calcium Channels in Neuronal Clonal Cell Lines1
Voltage-sensitive calcium channels (VSCCs) have been identified in three clonal cell lines. These are the neuroblastoma x Chinese hamster brain hybrid (NCB-20), the neuroblastoma x glioma hybrid (NGlOB-15), and the neuroblastoma (N4TGl). Depolarization of NCB-20 cells with 50 mM KC1 or 50 yM veratridine (VE) produced a 2to 3-fold increase in net 45Ca2+ uptake. In NCB-20 cells, this voltage-sens...
متن کاملAdrenomedullin inhibits insulin exocytosis via pertussis toxin-sensitive G protein-coupled mechanism.
Direct effects of adrenomedullin on insulin secretion from pancreatic beta-cells were investigated using a differentiated insulin-secreting cell line INS-1. Adrenomedullin (1-100 pM) inhibited insulin secretion at both basal (3 mM) and high (15 mM) glucose concentrations, although this inhibitory effect was not observed at higher concentrations of adrenomedullin. The inhibition of glucose-induc...
متن کاملGonadotropin-releasing hormone-1 neuronal activity is independent of cyclic nucleotide-gated channels.
Pulsatile release of GnRH-1 is essential for secretion of gonadotropin hormones. The frequency of GnRH-1 pulses is regulated during the reproductive cycle by numerous neurotransmitters. Cyclic nucleotide-gated (CNG) channels have been proposed as a mechanism to integrate the cAMP signal evoked by many neurotransmitters. This study reports the expression of the CNGA2 subunit in GnRH-1 neurons ob...
متن کاملRelationship between hormonal activation of phosphatidylinositol hydrolysis, fluid secretion and calcium flux in the blowfly salivary gland.
The addition of 5-hydroxytryptamine to the isolated blowfly salivary gland stimulates fluid secretion, transepithelial calcium transport and the breakdown of 32P- or 3H-labelled phosphatidylinositol The breakdown of [32P]phosphatidylcholine and [32P]-phosphatidylethanolamine was not stimulated by 5-hydroxytryptamine. In salivary glands incubated with myo-[2-3H]inositol for 1--3 h, more than 95%...
متن کاملCaffeine inhibits cytosolic calcium oscillations induced by noradrenaline and vasopressin in rat hepatocytes.
The effects of caffeine on agonist-induced changes in intracellular Ca2+ concentration ([Ca2+]i) were studied in single fura 2-loaded cells and suspensions of rat hepatocytes. In single cells, caffeine (5-10 mM) inhibited [Ca2+]i oscillations induced both by noradrenaline (0.1 microM) and by vasopressin (0.1 nM). Caffeine shifted the dose-response curves of the [Ca2+]i rise induced by vasopress...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 298 3 شماره
صفحات -
تاریخ انتشار 2001